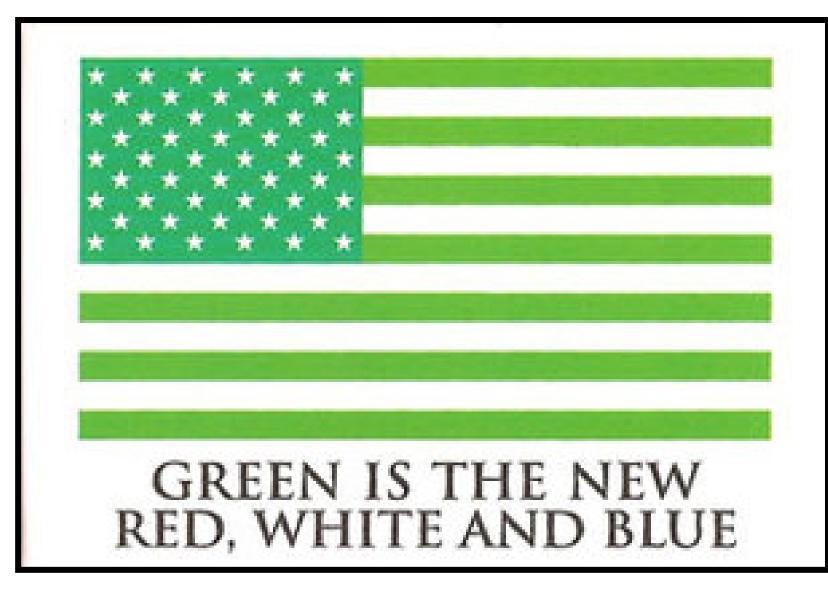


Mechanical System

Deep and Holistic Energy Applications

Energy Conservation **AND** Energy Efficiency

Thomas H. (Tom) Durkin, PE ASHRAE Fellow <u>thdurkin46@gmail.com</u> (317) 402-2292


Congrats!

E⁴ Energy Efficiency Efforts are Effective.

Tom Friedman

3-time Pulitzer Prize Winner, talking about politicians who refuse to accept climate science.

From her speech at the U.N. Climate Action Summit, September 2019

"For more than 30 years, the science has been crystal clear. How dare you continue to look away and come here saying that you're doing enough, when the politics and solutions needed are still nowhere in sight..."

My background...

Registered Professional Engineer

18 years as a facilities/maintenance engineer and plant operator

35 years as a design engineer

LEED Accredited Professional

Licensed Boiler Inspector

Certified Energy Auditor

ASHRAE Fellow

Awards

- 1997, 98 Consulting Engineers of Indiana Grand Project Award
- 1998, 99 American Consulting Engineers Council Honor Award
- 1999, 2010 Governor's Pollution Prevention Award Indiana
- **2002** Governor's Energy Efficiency Award Ohio
- 2007 PM Magazine Design Excellence Award
- 2009, 2013 ASHRAE Technology Award
- 2012 Election to ASHRAE College of Fellows
- 2016 Association of Energy Engineers 2016 Achievement Award

eprinting this proof for distribution or posting on web sites is not permitted. Authors may request permission to reprint or post on their web site once has been published. A reprint pe ion form may be found at www.ashrae.org

vstem Etticier

Some would arene r that the entire national energy picture is in flux, and that the cost of electricity i **Evolving Design** artificially low compared to natural eas

Of Chiller Plants uring the last 15 years, mecl changes. The rooms have be and valves, the equipment has be attention is paid to intricacies of cor tions that are less expensive to build

Heotnerma **Gentral Syst**

13 Tips From

ENERGY STAP

17 articles about HVAC innovations

HAMILTON HEIGHTS

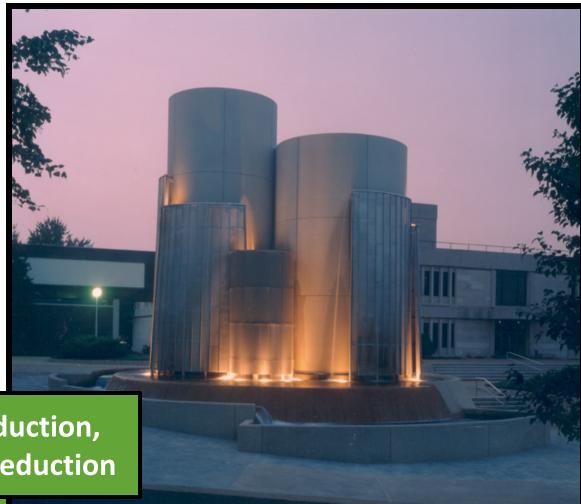
ELEMENTARY SC

The induced is deducated boat recipient of ellips endulated numericand card, second 10% more energy than opposited on a second card

Heat Recovery for School

How Some Schools in Indiana Ear

Co-author of HVAC Pump Handbook, Rev. 2


By Thomas H. Durkin, P.E., Member ASHRAE; and Keith E. Cecil, P.E., Member ASHRAE

My Engineering philosophy

Our clients are our partners, and we are stewards of their resources.

- Up-to-date, high-performance technology, judiciously applied.
- Environmentally-friendly, energyefficient design.
- Affordable solutions that are less expensive to build.
- Simpler solutions that are easier to operate and maintain.
- On-going relationships that our clients can trust.

60% energy reduction, 95% water use reduction

A Healthy and Effective Indoor Environment

Never Compromise

- Indoor air quality
- Occupant comfort
- Humidity control

The Quest...

Systems that do all the above <u>and</u> are

Less expensive to build Less expensive to operate, and Easier to maintain

Energy Conservation and **Energy Efficiency**

Gas and Electric Rates

Burlington Electric Co

LARGE GENERAL SERVICE (LG)

Energy usage over 3,000 kWh per month for three consecutive months in the last 12 mon

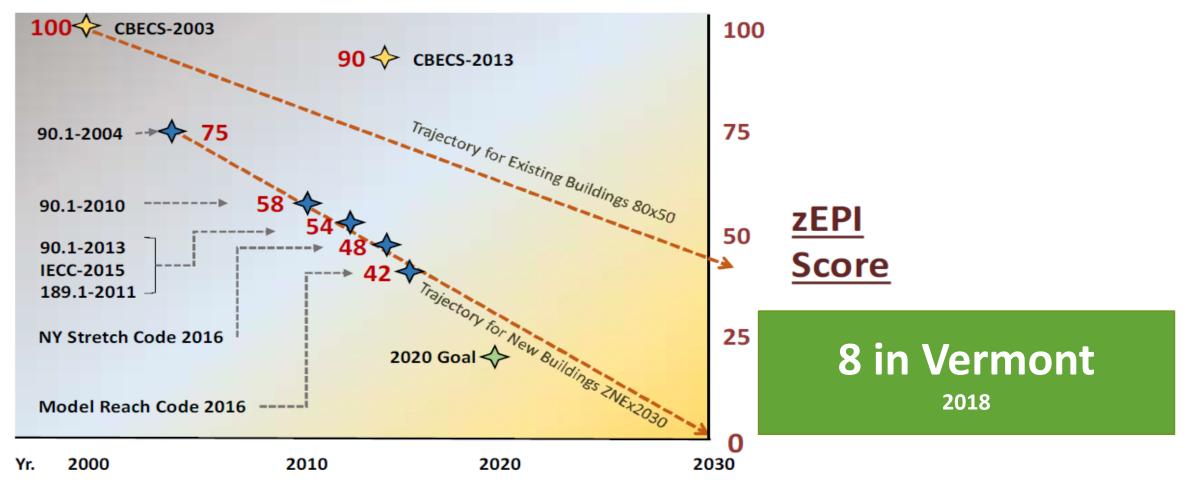
Customer Charge <= 25 KW	\$13.68			
Customer Charge > 25 KW	\$41.04			
Energy (kWh)	\$0.083003 per kWh			
Demand (kW)	\$20.03			
EEC (LG)	\$0.00512/kWh + \$1.3115/kW			
EEC (L2, >=1000 kW Demand)	\$0.00361/kWh + \$1.4185/kW			
Vermont Sales Tax	6.0%			
City Franchise Fee	3.5% (exclusive of Vermont Sales Tax)			
Local Option Sales Tax	1.0%			

Vermont Gas Co.

Туре	Current Rates
Daily Access Charge (per day)	\$3.8388
Natural Gas Charge (per CCF)	\$0.3891
Distribution Charge (per CCF)	\$0.3697
Energy Efficiency (per CCF)	\$0.0354
Assistance Program Fee *	\$1.05

Definitions

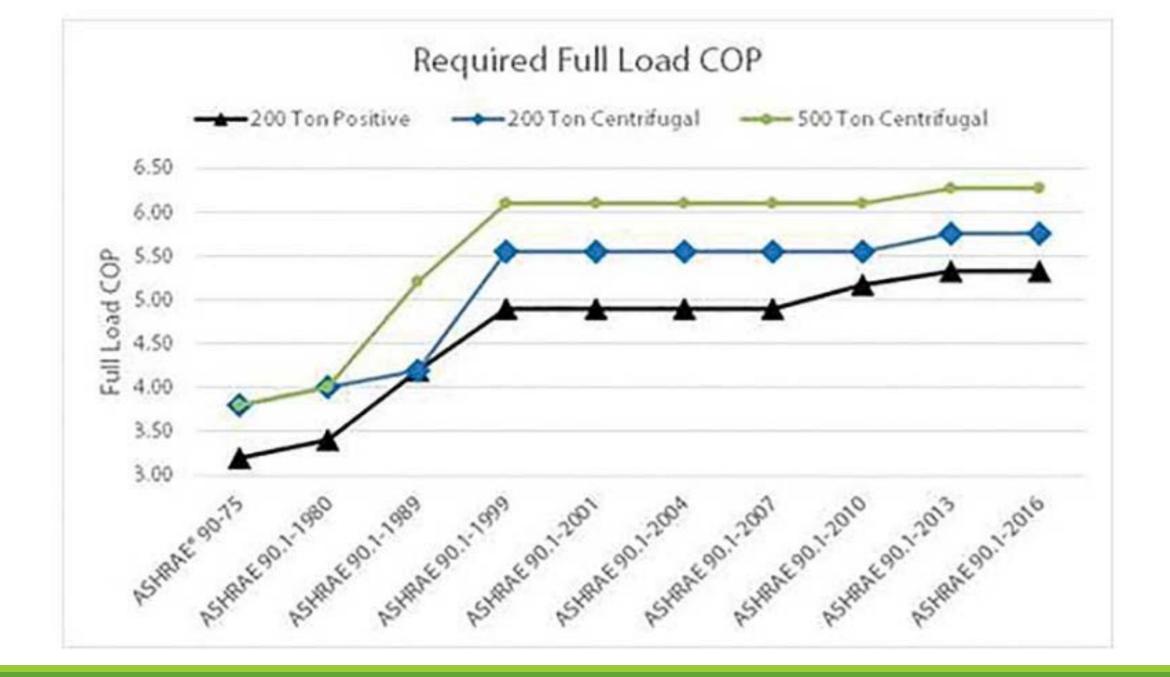
(not found in the Fundamentals Handbook)

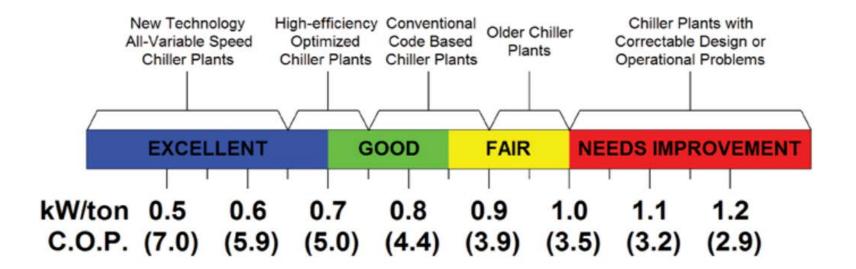

Holistic Energy Efficiency

 Identifying and addressing all the factors that impact the mechanical design. Not just the obvious, but all the <u>potential impacts.</u>

Deep Energy Efficiency

 Going beyond the usual or traditional...striving for and achieving exceptional results. And sometimes, inventing a new/better solution.


Zero Energy Performance Index (zEPI)



Is your roof big enough?

Chiller Plant Energy Use Spectrum

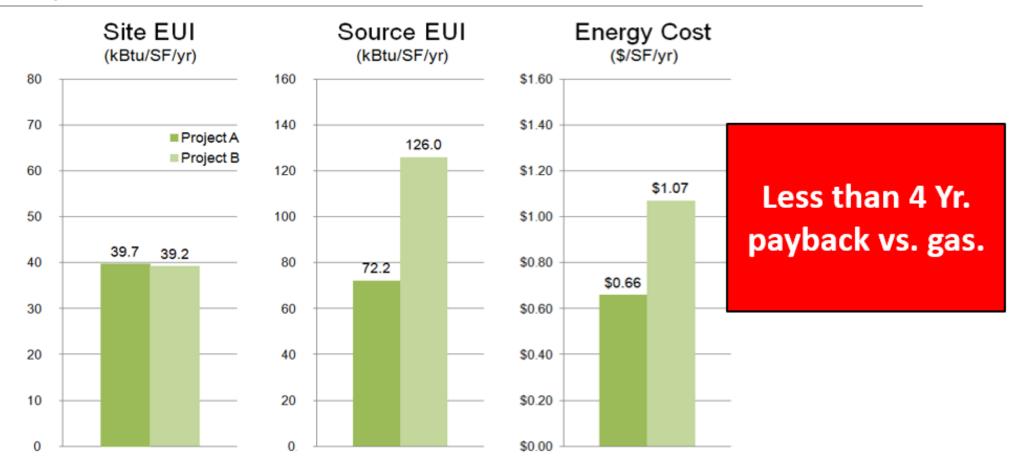
AVERAGE ANNUAL CHILLER PLANT EFFICIENCY IN KW/TON (C.O.P.) (Input energy includes chillers, condenser pumps and tower fans)

Based on electrically driven centrifugal chiller plants in comfort conditioning applications with 42F (5.6C) nominal chilled water supply temperature and open cooling towers sized for 85F (29.4C) maximum entering condenser water temperature. Local Climate adjustment for North American climates is +/- 0.05 kW/ton

If I wrote the energy codes...

- Engineers would have more control over budget
- Envelope testing at substantial completion
- 2-year testing of performance
- Low temperature (130F max) heating
- Energy Recovery and/or Heat Recovery Chillers
- Evaluate geothermal and solar

Integrating all of this into a coherent package

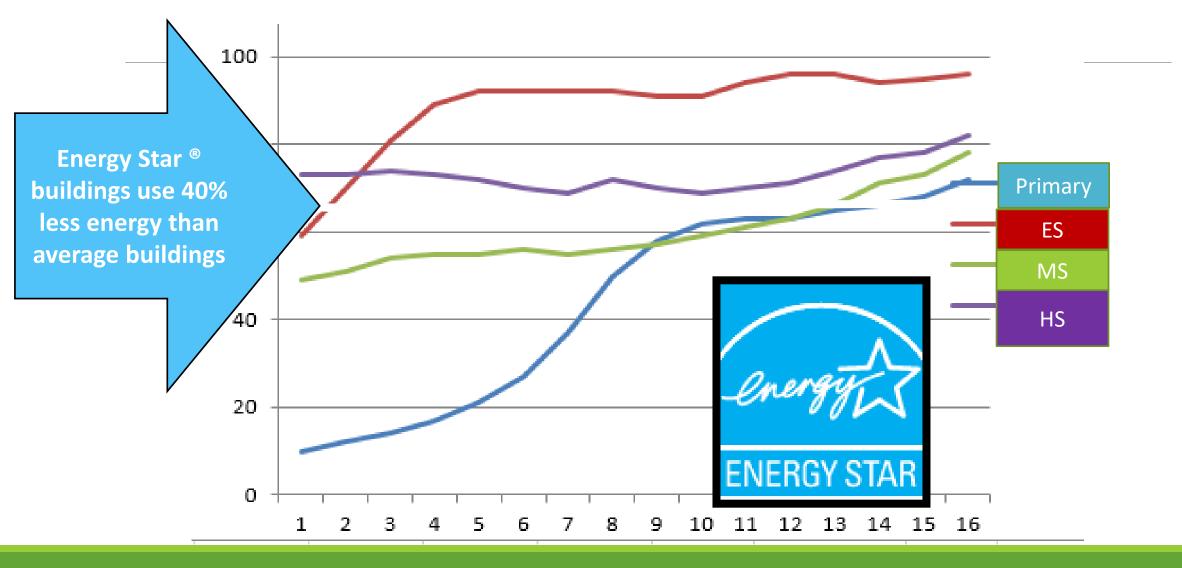

Engineers control the budget ???

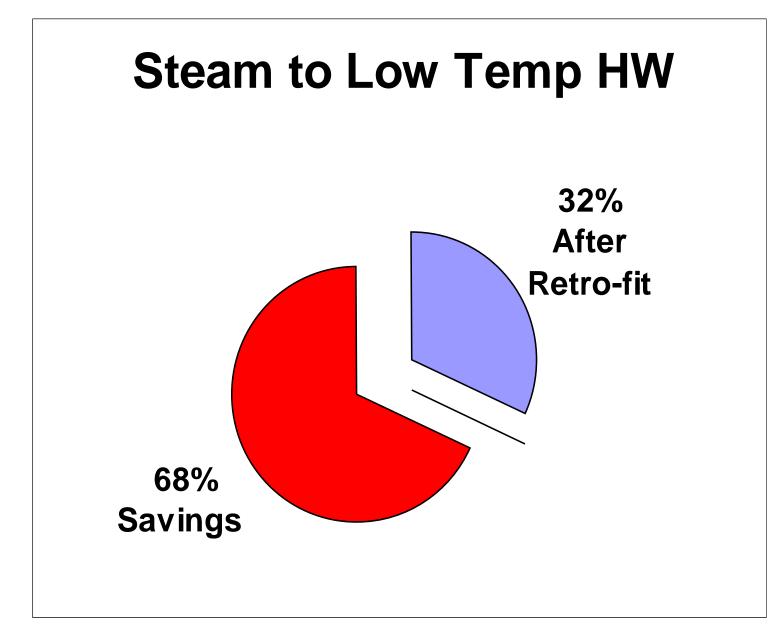
Am I in Fantasy Land ?

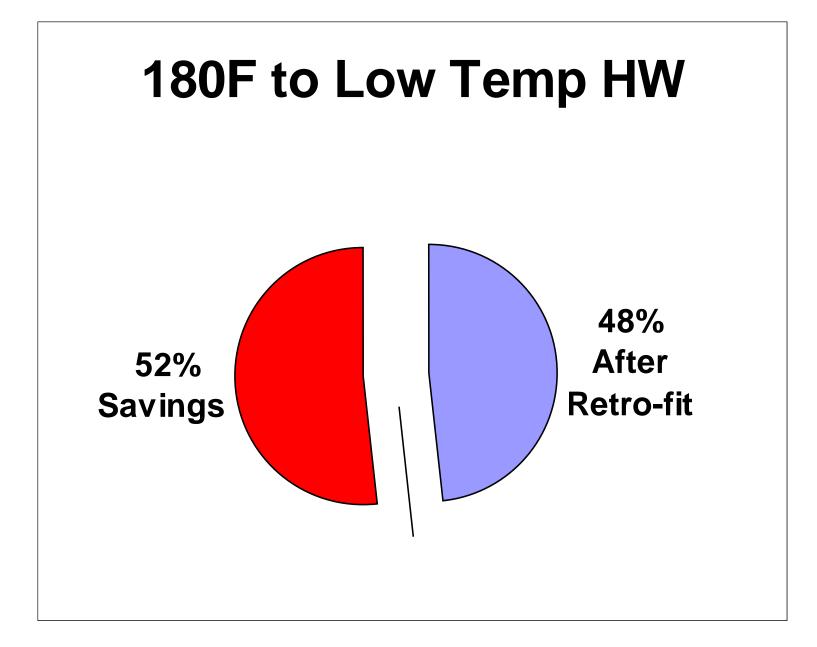
Site vs. Source vs. Cost

Courtesy of Mosley Architects

Thermoscans & Air Door Testing




Why is my office always cold?


Courtesy of Bledsoe Environmental

Let's fix this!

My (your?) new favorite number

130

Max HW Supply Temp

Reset vs. outside air temp down to 90F

Reasons to Recover Energy

Model Energy Code

"...do not reheat with new energy..."

ASHRAE Std. 90.1

• 6.5.2.1 "...controls shall prevent reheating or recooling..."

• 6.5.6.1 "...exhaust air energy recovery..."

Conditioning outside air is expensive and energy intensive

The exhaust stream that accompanies the make-up air contains energy that we need to recover.

At least 25% of your total HVAC cost

Tom's Rules of Energy Recovery

- 1. Never compromise IAQ, occupant comfort or humidity control.
- 2. Don't spend more to save energy than energy is worth.
- 3. Try to engineer the need for heat recovery out of a project.
- 4. Anything goes...BTUs = BTUs.

BTUs = BTUs

One shower = 4.4 Tons of Cooling

BTUs = BTUs

Turn Gray BTUs into Green BTUs

by

Heating your buildings with BTUs from the people and the lights, BTUs that were being rejected at the condensing units or relief vents.

They're your BTUs, you bought them...don't just throw them away.

Reasons to Recover Energy

Cost of Energy

- Electric = \$2.49/Therm
- Conventional Boiler = \$1.17/Therm
- Condensing Boiler = \$0.82/Therm
- District steam = \$0.86/Therm
- Recovered heat < \$0.60/Therm>
- Reduced CHW & HW demand = <\$1.03/Therm>

Green house gas reductions

Ways to Recover Energy

On the air side...

2016 ASHRAE Systems Handbook Chapter 26, nine options

- Process to Process
- Process to comfort
- Comfort to comfort (lower the enthalpy, if possible)

On the water side...

2016 ASHRAE Systems Handbook Chapter 9 and 43, several options

Systems Handbook Chapter 26

Comparison of 8 Air-to-air Energy **Recovery Devices**

	Fixed Plate	Membrane Plate	Energy Wheel	Heat Wheel	Heat Pipe	Runaround Coil Loop	Thermosiphon	Liquid Desiccant
Airflow arrangements	Counterflow Cross flow ¹	Counterflow Cross flow ¹	Counterflow Parallel flow	Counterflow	Counterflow Parallel flow	20 2000	Counterflow Parallel flow	20 2000
Equipment size range, c fm	50 and up	50 and up	50 to 74,000 and up	50 to 74,000 and up	100 and up	100 and up	100 and up	1000
Typical sensible effectiveness $(m_g - m_e), \%^c$	50 to 75	55 to 75	65 to 80	65 to 80	40 to 60 ^b	45 to 65 ⁹	40 to 60	40 to 60 ^b
Typical latent ef- fectiveness,* % ^c	0	25 to 60	50 to 80	0	0	0	0	50 to 75 ^{b,d}
Total effective- ness,* % ^c	20 to 50	35 to 70	55 to 80	25 to 60	15 to 35	-	.—	40 to 754
Face velocity, fpm	200 to 1000	200 to 600	500 to 1000	400 to 1000	400 to 800	300 to 600	400 to 800	300 to 450
Pressure drop, in. of water	0.4 to 4	0.4 to 2	0.4 to 1.2	0.4 to 1.2	0.6 to 2	0.6 to 2	0.6 to 2	0.7 to 1.2
EATR, %	0 to 2	0 to 5	0.5 to 10	0.5 to 10	0 to 1	0	0	0
OACF	0.97 to 1.06	0.97 to 1.06	0.99 to 1.1	1 to 1.2	0.99 to 1.01	1.0	1.0	1.0
Temperature range, °F	-75 to 1470	-40 to 140	-65 to 1470	-65 to 1470	-40 to 200	-50 to 930	-40 to 104	-40 to 115
Typical mode of purchase	Exchanger only Exchanger in case Exchanger and blowers Complete system	Exchanger only Exchanger in case Exchanger and blowers Complete system	Exchanger only Exchanger in case Exchanger and blowers Complete system	Exchanger only Exchanger in case Exchanger and blowers Complete system	Exchanger only Exchanger in case Exchanger and blowers Complete system	Coil only Complete system	Exchanger only Exchanger in case	Complete system
Advantages	No moving parts Low pressure drop Easily cleaned	Low pressure drop Low air leakage Moisture/mass transfer	Moisture/mass transfer Compact large sizes Low pressure drop Available on all ventilation system plat- forms	Compact large sizes Low pressure drop Easily cleaned	No moving parts except tilt Fan location not critical Allowable pres- sure differen- tial up to 2 psi	Exhaust air- stream can be separated from supply air Fan location not critical	supply air Fan location not critical	Latent transfer from remote airstreams Efficient micro biological cleaning of both supply and exhaust airstreams
Limitations	Large size at higher flow rates	Few suppliers Long-term maintenance and perfor- mance unknown	Supply air may require some further cool- ing or heating Some EATR without purge	Some EATR with purge	Effectiveness limited by pressure drop and cost Few suppliers	Predicting performance requires accu- rate simula- tion model	Effectiveness may be limited by pressure drop and cost Few suppliers	Few suppliers Maintenance and perfor- mance unknown
Heat rate control (HRC) methods	Bypass damp- ers and ducting	Bypass damp- ers and ducting	Bypass damp- ers and wheel speed control	Bypass damp- ers and wheel speed control	Tilt angle down to 10% of maximum heat rate	Bypass valve or pump speed control	Control valve over full range	Control valve o pump speed control over full range

are higher than flow rates at which testing is done.

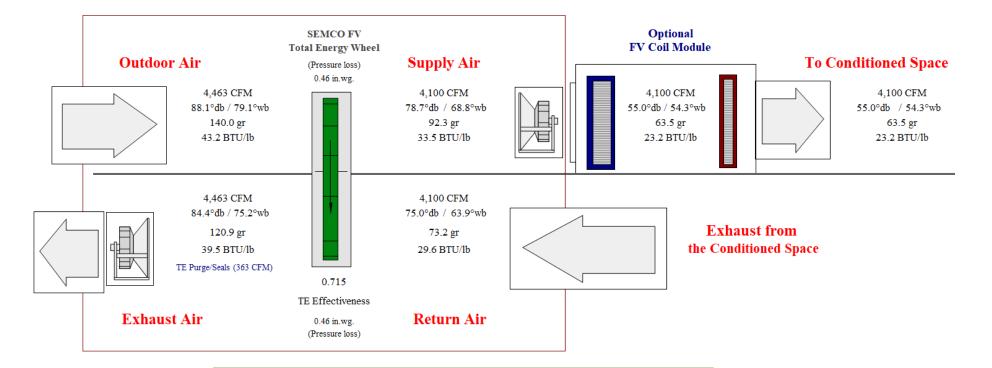
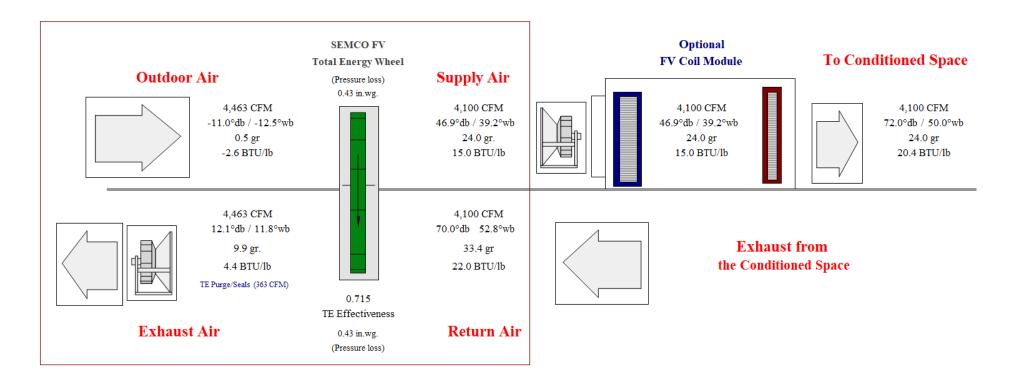

Effectiveness values increase slightly if flow rates of either or both airstreams Data based on typical range of third-party certified data. OACF = outdoor air correction factor ^dFace velocity of 250 to 500 fpm.

Table 3 Comparison of Air-to-Air Energy Recovery Devices

Highlights of the Chart


- Most efficient...Energy Wheels and membrane plate
- Least efficient...heat pipes and runaround coils
- Membrane plate and energy wheel only ones with "latent effectiveness"
- > Air pressure drops included for fan Hp
- Size and cost not listed
- Most require air streams to be side-by-side

Energy Wheel in Cooling

Cooling reduced by half

Energy Wheel in Heating

Heating reduced by 75%

Not in Chapter 26...

Better options when the air streams aren't together

Heat recovery chillers

Potential mis-applications

Mis-applications

Even the best ideas can be poorly applied...

Energy wheels on a VAV system... can only contribute when OAT is above 75 or below 25F

Chesterton MS - 2000

(Deep Energy Example)

Large internal area, below grade, two stories above

• Heat positive 12 months/Yr

Typical solutions

• Economizers

Low head room, limited access for ductwork,

Low ambient chiller

Alternative Solution...resurrect the old "heat recovery chiller" concept...**HRC**

Heat Recovery Chiller?

An old concept, at least 1971

Water cooled chiller

Condenser connection to building heating system

Applicable any time there are concurrent heating and cooling loads

Cost effective in any utility rate structure

Key Element - Elevated condensing temperatures ~ 130F

Coefficient of Performance

Approximate seasonal averages, equipment only, not system COP

Central Steam COP = 0.86 at building

Site generated LP steam COP = 0.5

Conventional 180F boiler COP = 0.66

Condensing boiler COP = 0.9

Geothermal COP = 4.2

HRC COP = 7.7 (Htg and Clg)

At average Indiana rates, per therm, electricity is 3.5 times more expensive than gas.

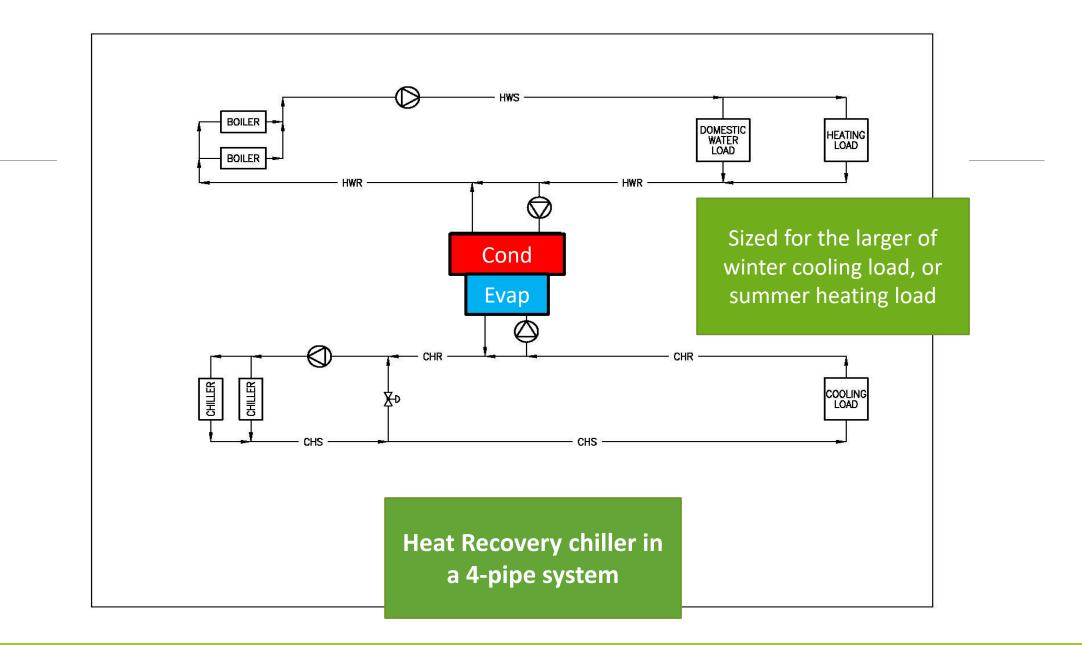
Great idea and Compelling Economics, but...

You have to have a place to put the heat in summer

- Reheat for humidity control
- Domestic water heating
- Process heating

You have to have a place to put the chilled water in the winter

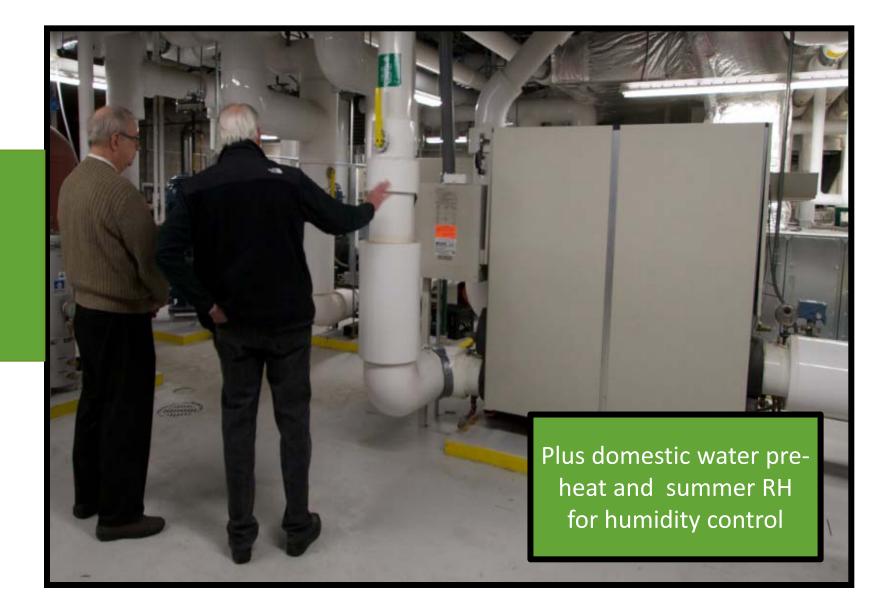
- Heat positive rooms
- Computer centers


Few successful Applications, Why now?

No place to put low grade heat... **130F max HWST** stands on its own

Cost of gas... 100% increase since 1998

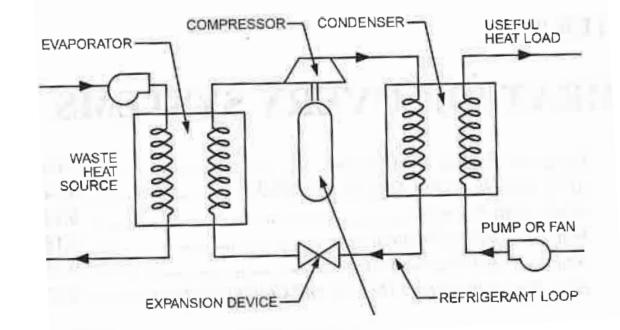
Tough enough machine to handle duty... scroll compressors, HP refrigerants, small size


Smart enough controls to stay on-line... fourth or fifth generation

Cooling & Heating Cost

OAT	Economizer Cooling and	Low Ambient Chiller and	Heat Recovery	Savings/Yr	Savings/yr	
	Heating Per Hr	Heating Per Hr	Chiller Per Hr	HRC vs. Econ	HRC vs. Low Amb Chl	
50	\$6.80	\$10.46	\$4.42	\$803.42	\$2,035.36	
40	\$6.60	\$9.64	\$4.86	\$667.58	\$1,834.07	
30	\$6.39	\$8.87	\$5.40	\$459.46	\$1,610.98	
20	\$6.20	\$8.22	\$6.00	\$75.48	\$859.45	
10	\$6.00	\$7.70	\$6.70	(\$140.04)	\$202.49	
				\$1,865.90	\$6,542.34	

Deep Energy Example



Dedicated Heat Recovery

By Thomas H. Durkin, RE., Member ASHRAE, and James B. (Burt) Rishel, RE., Fellow/Life Member ASHRAE

he advent of the small scroll or screw chiller, capable of producing condenser water as high as $140^{\circ}F$ ($60^{\circ}C$), created an opportunity for recovering heat from a dedicated heat recovery chiller's condenser water circuit for heating or domestic water systems while providing beneficial cooling for the chilled water system. These systems are called "dedicated" heat recovery because 100% of the heat generated by the dedicated heat recovery chiller (DHRC) can be used for hot water heating applications. Also, the DHRC can be piped and controlled to produce the desired evaporator or condenser temperature. Transfer of the recovered heat in this article is limited to clean water appli-

cations, such as preheating, heating, reheating, domestic, pool water heating, or snow melting. The tolowing attice was published in ASHRAE Journal, October 2003. © Copyright 2003 American Society of Heating, Refrigerating and Ak-Conditioning Engineers, Inc. It is presented for educational purposes only. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE.

2016 Systems Handbook Chapters 9 and 43

ASHRAE Journal October 2003

In-Patient Psychiatric Hospital

BTU Meter calculates recovered heat

April to August 2006 = 1,386.4 MMBTU recovered

Value of recovered heat = \$18,500 plus \$585 chiller efficiency differential

Payback when planned......6 yrs

As operated (Katrina Effect)1.9 years

Tri-North Middle School

Utility Costs

Electric was \$0.55/kWh, up to \$0.63/kWh Gas was \$0.54/Therm, up to \$1.09/Therm

Normalized for Utility Cost and HDD 2005......\$94,700

2002 usage at 2005 rates.....\$143,907

Payback...... 2.0 years

Key Learning

ASHRAE Technology Award Winner

George Washington Carver Elementary

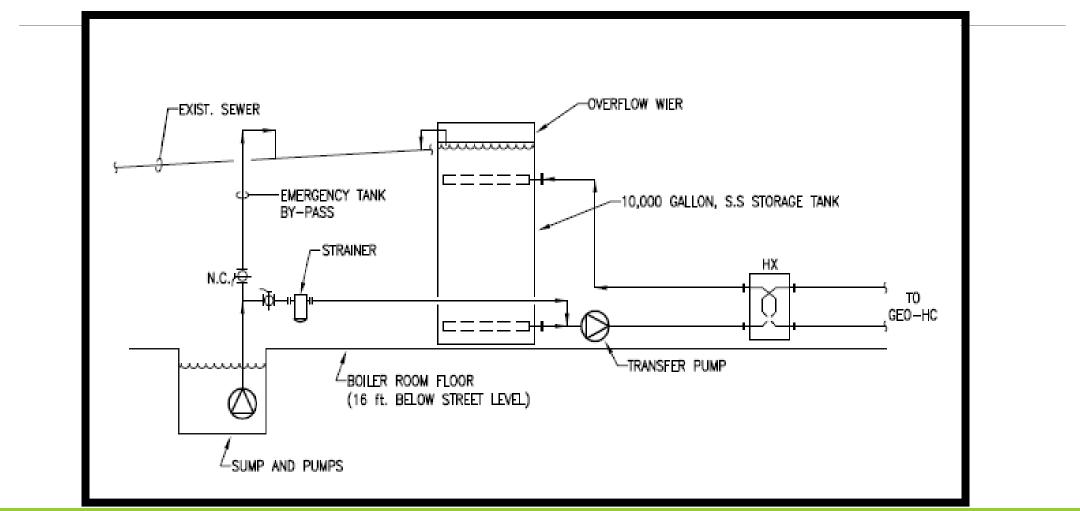
Adding air conditioning as part of system wide upgrade

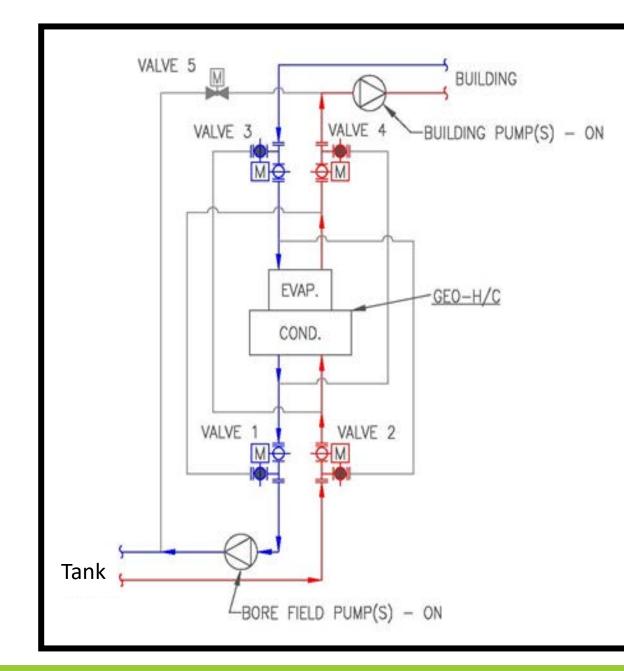
- Built in 1935, traditional 3 story school with the boiler room below lower level (16 Ft below street level)
- Underground stream, 150 GPM into boiler room
- Several floods
- Sump pumps on emergency generator
- Raised switchgear out of danger

IPS #87 (2005)

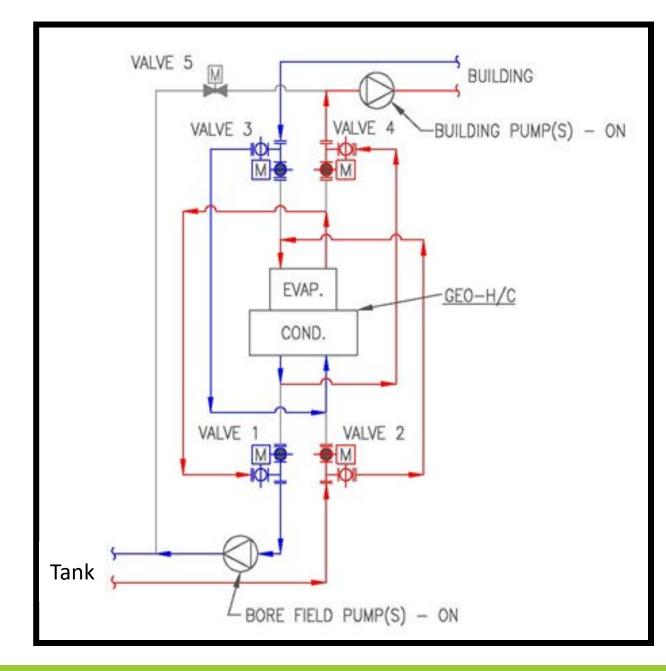
If we can use the ground water, we'll get Geothermal efficiency without the investment in bore field.

Synthesis of four technologies that, independently, were proven to be cost effective and very efficient.

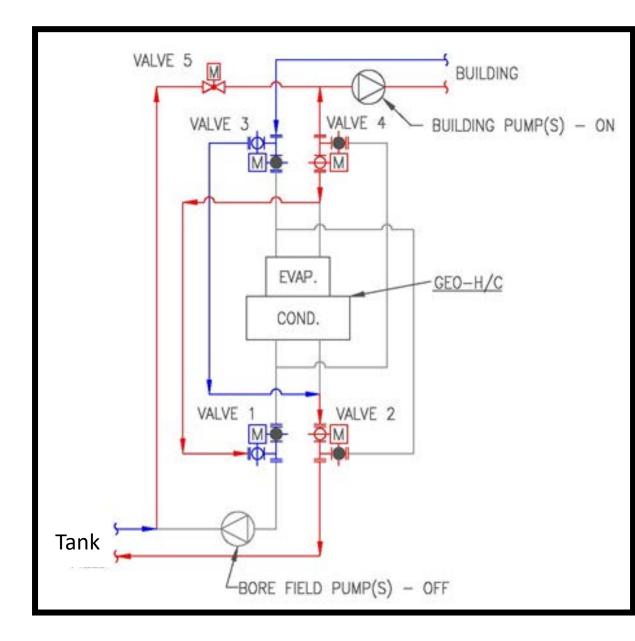

- Low Temperature Heating
- > 2-pipe HVAC
- Heat recovery chillers
- > Geothermal central systems


Turning a Liability into an A\$\$et

An earth coupled heat recovery chiller


Evaporator connected to building cooling system Condenser connected to building heating system Earth coupled for heat rejection (summer) Earth coupled for heat absorption (winter) One compressor provides both heat and cool **Conventional air side equipment** (AHUs, UVs, FCUs, VAVs) with air side economizers, DOAS not required. Can be an easy alternate for tight budgets

IPS #87 Ground Water



2-Pipe Geo Central System Cooling Mode

2-Pipe Geo Central System Heating Mode

2-Pipe Geo Central System Sensible Cooling Mode

ASHRAE Journal

August 2007

The following article was published in ASHRAE Journal, August 2007. ©Copyright 2007 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. It is presented for educational purposes only. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE.

Geothermal Central System

By Thomas H. Durkin, P.E., Member ASHRAE; and Keith E. Cecil, P.E., Member ASHRAE

The next generation of geothermal systems for school buildings is a recent synthesis of three technologies that separately have proven to be effective: geothermal (earth-coupled) heating and cooling; dedicated heat recovery chillers; and the modern

two-pipe HVAC system.

From two-pipe HVAC, comes economy and simplicity for school designs, and the proven ability to heat large buildings with low-temperature water (see sidebar on *Modern Two-Pipe System*). From dedicated heat recovery chillers comes a proven machine that can be programmed to simultaneously produce 44°F (7°C) cooling water and 130°F (54°C) heating water. And, from geothermal, comes an efficient heating and cooling source. The geothermal systems discussed in this article are closed systems, circulating an engineered heat transfer solution.

Another Heat Pump Article?

Rather than multiple distributed compressorized units throughout a building (conventional geothermal heat pumps), this concept has a single unit located in a central mechanical room. The heart of the system is a heat recovery chiller/heater, or Geo-H/C. It is a single unit (multiple refrigeration circuits provide redundancy) that will heat the building in the winter, cool it in the summer, do both in the spring and fall, and preheat the domestic hot water if demand is high enough.¹ Geo-H/C can be connected to either a

two-pipe or a four-pipe building system. All of the air-side equipment would be standard air handlers, unit ventilators or fan coils. This configuration can operate air-side economizers, and it can use the well water to cool the building directly when the ground temperature and indoor humidity allow, thus giving two sources of free cooling. When outside temperatures are cool, air-side economizers on AHUs and unit ventilators provide cooling without any compressors running; and when the well return temperature is cool enough, the sensible cooling mode provides air conditioning, again without compressors operating. Economizer availability in this scheme is seen as a significant efficiency benefit (see sidebar on Economizers in Schools).

About the Authors

Thomas H. Durkin, P.E.; and Keith E. Cecil, P.E., are partners at Durkin & Villalta Partners Engineering in Indianapolis.

42 ASHRAE Journal

ashrae.org

Criteria for a Technology Award

- Energy Efficiency
- Indoor air quality and thermal comfort
- Innovation
- > Operations and Maintenance
- Cost Effectiveness
- Environmental Impact
- Value added

Operating Cost

	Before Renovation	After Renovation	
	2005-06	2007-08	
Electric	\$22,770	\$42,499	
Gas	\$28,500	\$662	
Total	\$51,270	\$43,111	

33% savings, corrected for cost of energy IPS most efficient building (\$0.86/SF/Yr)

Added cooling and switched to 12-month school calendar Energy Star[®] eligible

IEQ and Thermal Comfort

Std 62.1 compliance

- Continuous monitoring of CO2, temperature and humidity
- Location right on an Interstate, now able to keep windows closed

IPS #87 vs. other IPS projects

- Comparable construction cost to 4-pipe fan coil system
- Fewer hot/cold calls
- Fewer maintenance calls
- > Only outage GEO-H/C due to clogged strainer
- Most efficient building (30+ without A/C)
- Boilers run only for testing

Operations and Maintenance

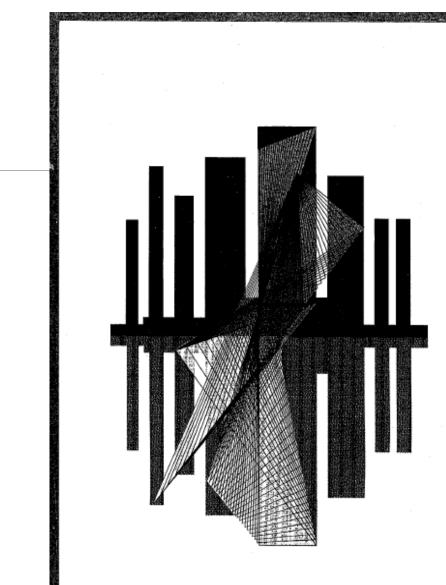
"Saving money is important, but we like **Durkin's 2-Pipe** systems because they're so **trouble free**. We get **fewer temperature complaints and fewer maintenance calls** from his buildings than the others. We would gladly pay more for improved reliability, the **cost savings is a bonus**."

> Steve Young Facilities Management Division Chief Indianapolis Public Schools

Environmental Impact

(Pounds per year, source)

	Before		After			
Pollutant	Gas	Electric	Total	Electric	Change	
CO2	302,823	676,800	979,623	1,113,000	+133,377	
Sox	0	1,178	1,178	1,937	+759	
NOx	238	1,963	2,201	3,229	+1,028	
Particulate	18	68	86	111	+25	
Total			983,088	1,118,277	+135,189	


Added air conditioning 12 month school calendar

Value Added

- Window into mech room
- Color coding all piping
- Lots of visible gages
- TCC donated 30 read-only copies of control software
- Earth science curriculum

Category II - Institutional Buildings - Existing

Thomas H. Durkin, P.E.

Durkin & Villalta Partners Engineering

HVAC Renovations at George Washington Carver Elementary School Indianapolis, Indiana

2009 ASHRAE Technology Award

First Place

In recognition of outstanding achievement in the design and operation of energy-efficient buildings

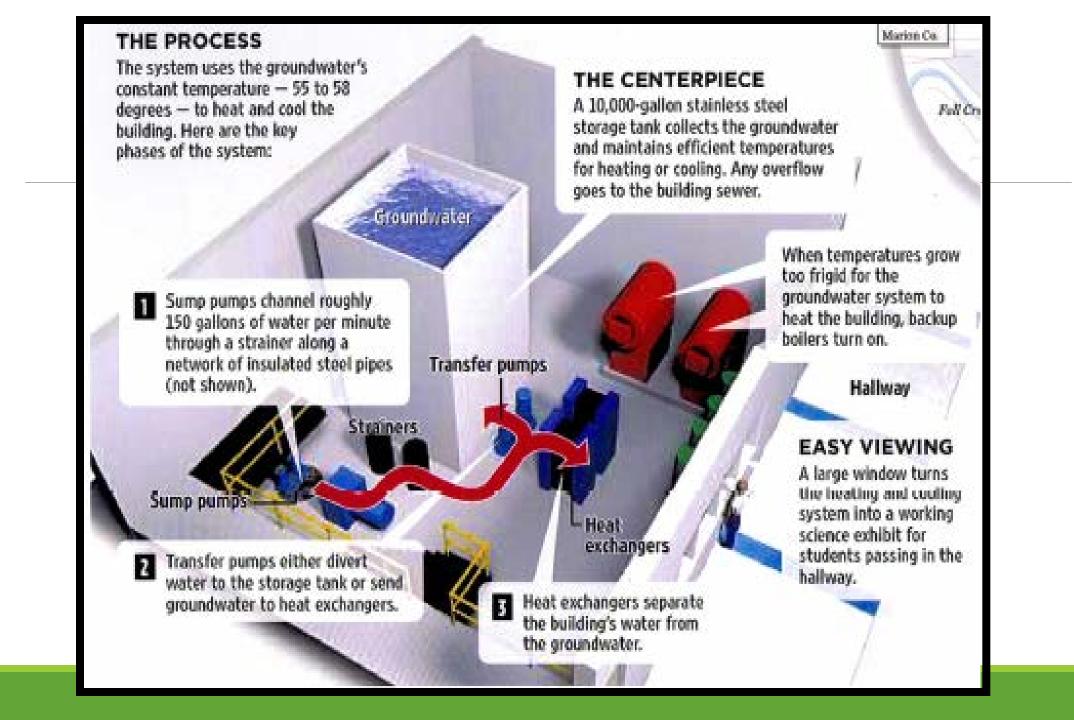
PME Magazine

2007 Excellence in Design Award

Engineered Systems Magazine

continuing a

When George Washington Carver School was built in 1935, boller room excavation inadvertently intercepted an underground spring. Ever since, sump pumps ran continuously to remove approximately 150 gpm of ground water from the school's basement. This is the story of using imagination, a central reversing chiller, and smart pumping to forge a sustainable solution that would make the school's namesake proud. Adding cooling while reducing overall energy costs. significantly made school officials pretty happy, too.


by Steve Young, Steve Johnson, and Tom Durkin

ten George Wathington Carvar was inadvertantly inter to tettanve an imately 150 gorn of ground water from the school's basement. For 70 years the storend water was seen as a significant liability since several power outages had disabled the sump pumps and flooded the boller room.

In 2006. Indianapolis Public Schools (LPS) chose school #87 to be a year-round, inner city magnet school, requiring the addition of air conditioning. IPS sought out a consultant who had a vision to use design now provides cooling at half the cost of conventional equipment, and heating for about one quarter the cost of the old system. The ground water is now a rightficant asset. The creative legacy of George Washington Carver continues at his namesake school.

Time new developments are the products of a creative mind, we must therefore stimulete and encourage that type of mind in every way possible." - George Washington Carver

Geothermal heating and cooling will almost always be more efficient to operate than conventional systems. The first-cost premium is usually the cost of drilling the wells (bore holes), which may be as much as \$3,000 per installed ton of cooling. In urban settings like this one, there is seldom enough acreage for a well field (bore field). For the ground water for the building's heating and cooling system. The mample, at nominal well spacing of 20 ft, a football field would be big enough for about 350 tons of cooling, given reasonable subsurface

The "Mini-Campus" (Holistic Energy Efficiency example)

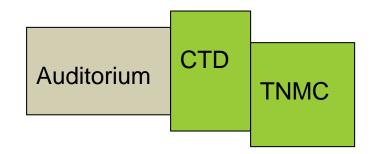
Can a heat recovery project help another building?

Are there concurrent heating and cooling opportunities?

Is it cost effective?

Does it save energy?

CTD and TNMC

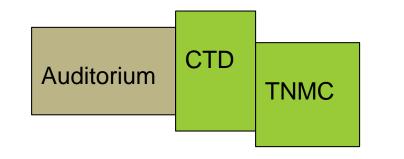

2/3 of the Fine Arts Plaza at Indiana University

CTD (1930s) renovations were planned in 1998 when TNMC was built

• HW and CHW connections in TNMC

The issues...

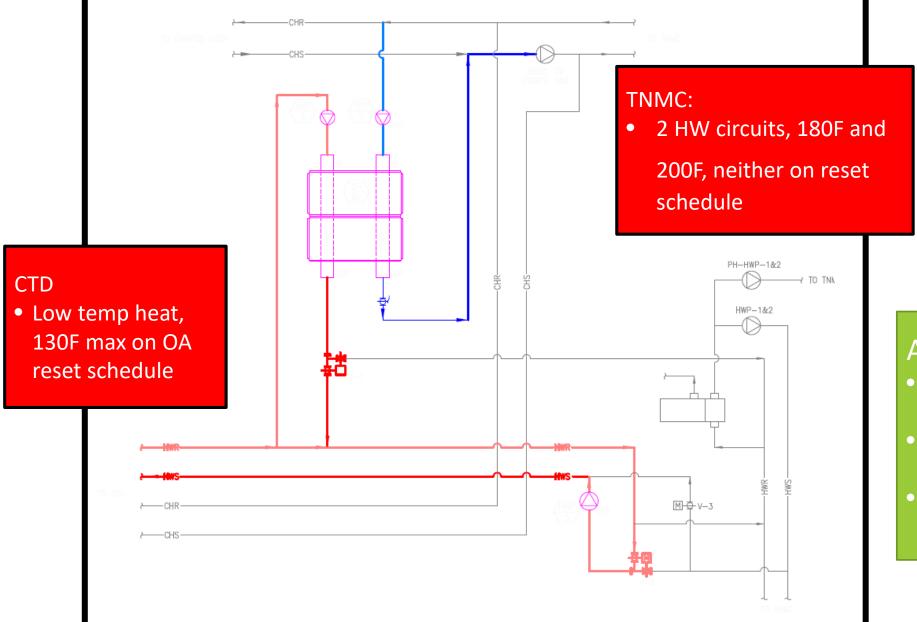
- Both require summer reheat for humidity control
- TNMC requires 12 month cooling


CTD and TNMC

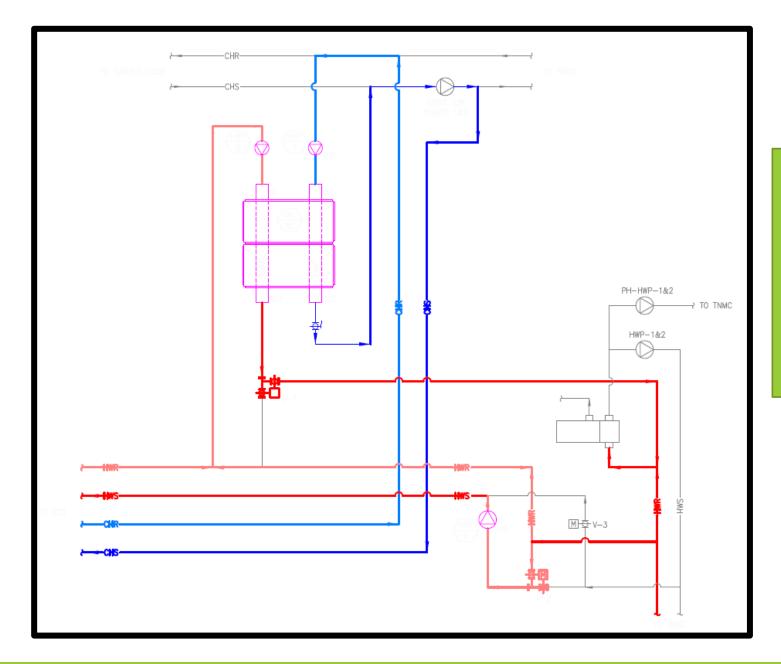
2/3 of the Fine Arts Plaza at Indiana University

CTD (1930s) renovations were planned in 1998 when TNMC was built • HW and CHW connections in TNMC

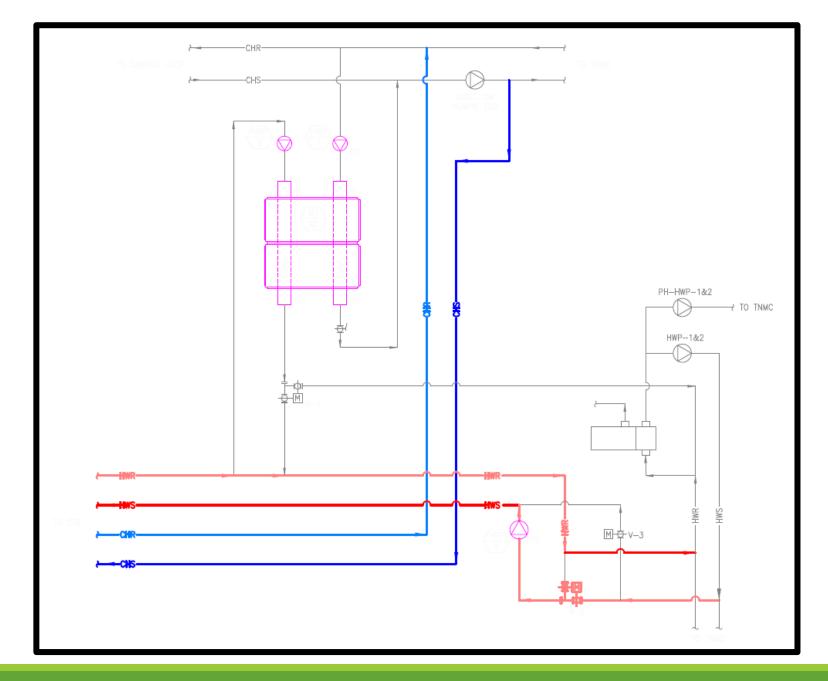
The issues...


- Both require summer reheat for hun
- TNMC requires 12 month cooling

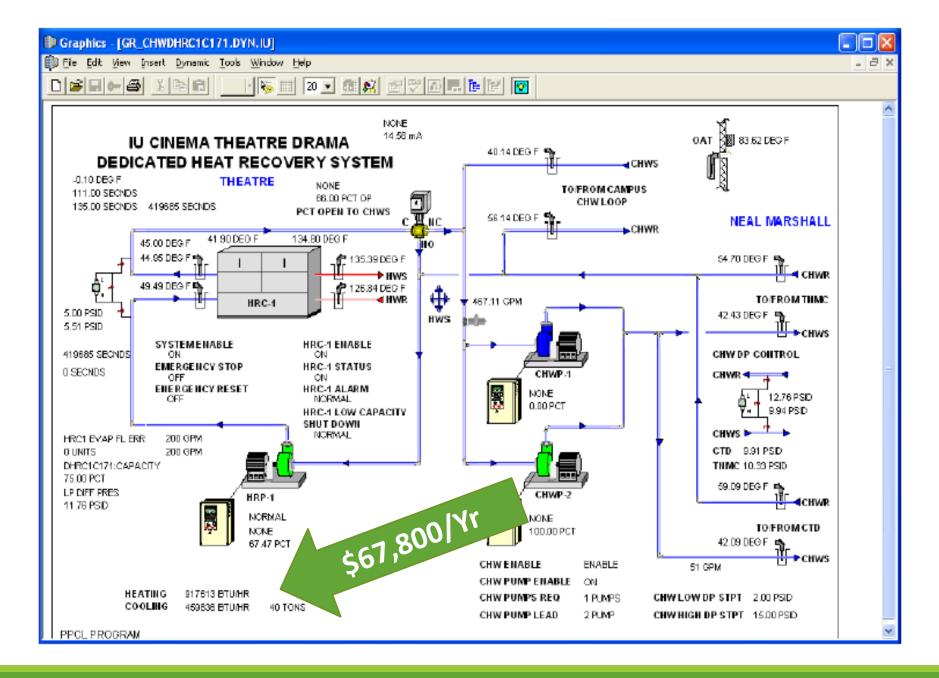
Our design proposal


- Design CTD for low temp heating
- HRC as heat source
- Backfeed TNMC when appropriate

IU said okay, but only as an alternate.


At OAT below 40F,

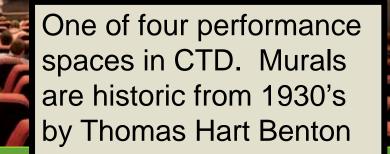
- HRC provides all the heat for CTD
- Condenser outlet on HW reset schedule vs. OA
- TNMC heating on old schedule from steam HX

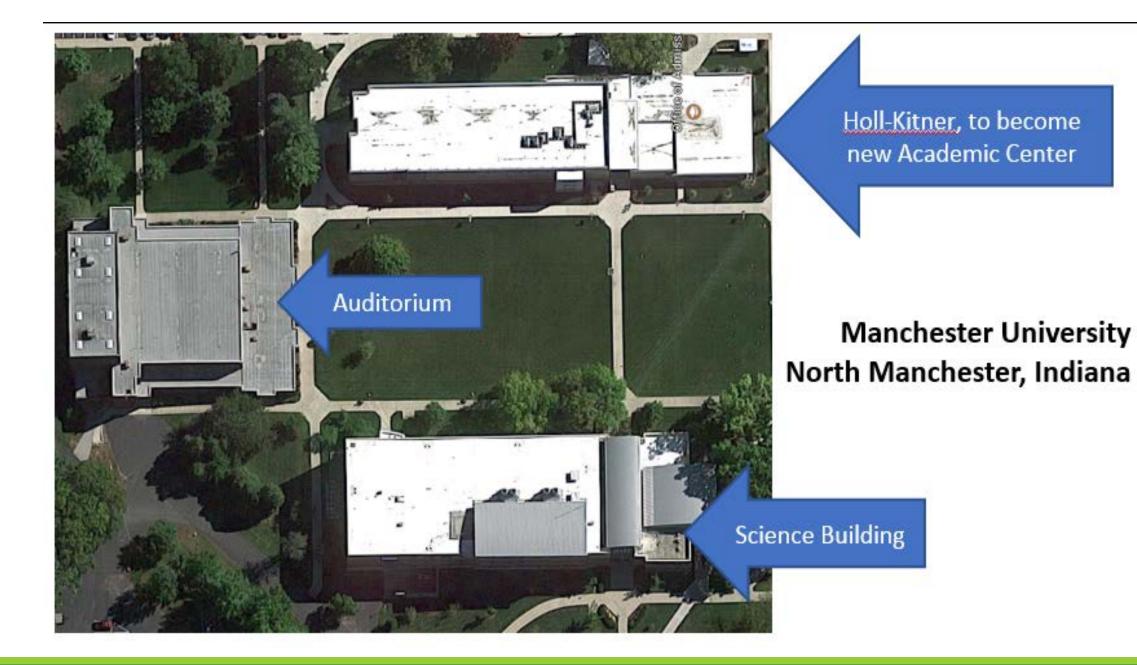

At OAT above 40F,

- HRC provides all the heat for CTD and TNMC
- 120F condenser outlet set point
- Steam HX is off

HRC off

• CTD and TNMC heating on old schedule from steam HX, per original plan


Bid as an alternate: \$159,000; payback = 2.3 Yrs (1/2 of projected)


....

1

Manchester University North Manchester, Indiana

Existing Conditions

- Renovation and expansion of H-K into The Academic Center
- Utility tunnels (CHW) connect all three; steam to H-K and Auditorium
- H-K and Auditorium need reheat for summer humidity control, but not available because steam off from April to October
- Science has its own boilers, phase 1 of steam system phase out.
- Campus loop short of CHW capacity.

Two Approaches

1. Stand alone - boilers and chiller at Academic Center

- 2. Energy recovery (Holistic) approach that would
 - Provide heating and cooling for Academic Center
 - Connect Academic Center with its two neighbors
 - Address summer reheat requirements at Academic Center, Science and Auditorium

What changes?

Stand Alone Approach, all at Academic Center

- Air cooled chiller
- Two low temperature boilers

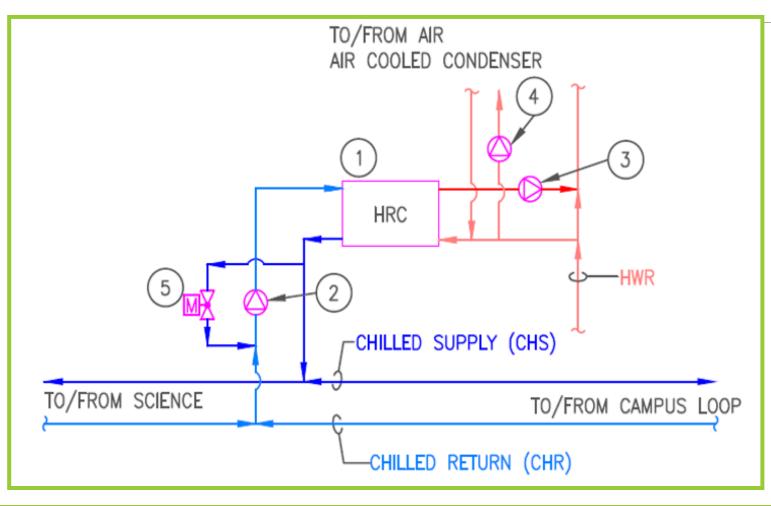
What changes?

Energy recovery (Holistic) Approach

- Heat recovery chiller at Science
 - Air cooled condenser for both chilled water and heat recovery
 - Geo alternate was designed but not built
- Low temp boiler serving all three buildings
 - Utilize spare capacity for redundancy
- New HW lines connecting all three
 - 1,000 Ft of steam mains repurposed as HW return
- Academic Center required mechanical space reduced

Cost Implications

Net cost **increase 1%** of total Academic Center construction budget


But

If we include campus master plan \$ for boilers at Auditorium,

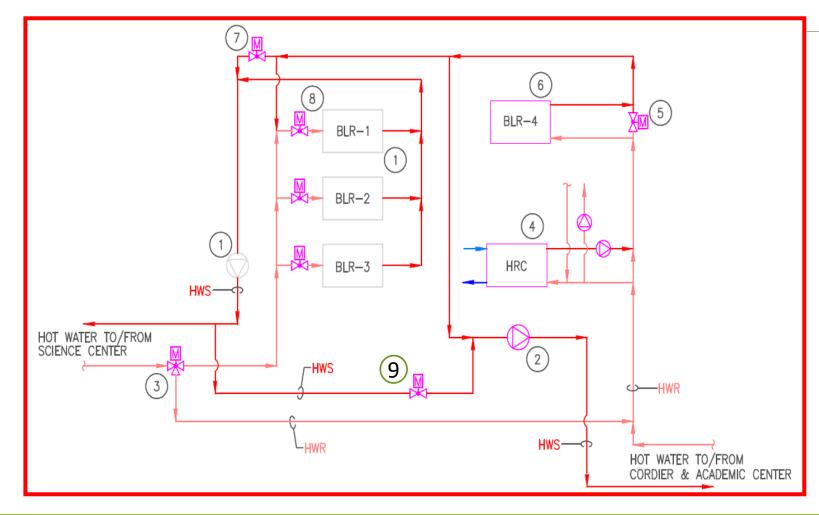
Net Budget decrease of \$83,000.

Additional **300 S.F.** at Academic Center now available for academic uses at average cost of \$150 per S.F.

Chilled Water Schematic at Science

- 1. 100T heat recovery chiller
- 2. Variable speed primary pump
- 3. Constant speed condenser pump
- 4. Constant speed heat rejection pump
- 5. Minimum flow/HRC discharge temperature control valve

An Efficient Heating System


Tying two designs together

Academic Center and Auditorium heating designed for 130F

Science Building heating designed for 180F

- Revise Science HW supply schedule based on control valve position, not outside air
- If Science HW return is cool enough, < 130F, divert to HRC inlet

Hot Water Schematic at Science

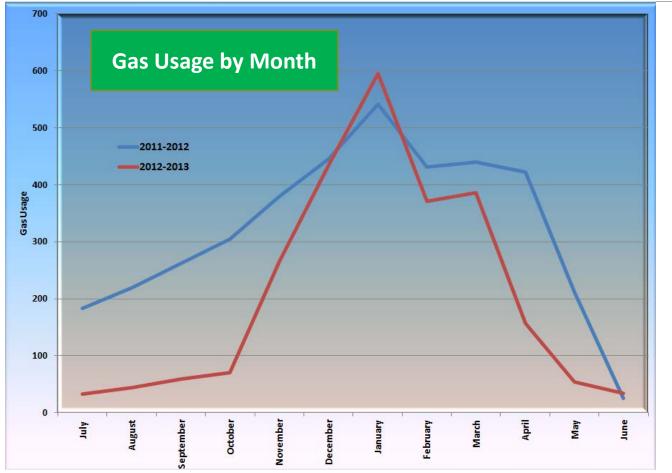
- 1. Exist HW boilers (3) and pumps for Science (2)
- 2. New HW pumps for Academic Center and Auditorium (2)
- 3. New HW diverting valve
- 4. Heat Recovery Chiller (HRC)
- 5. BLR-4 by-pass valve
- 6. New low temp boiler for Academic Center and Auditorium
- 7. Exist Boiler by-pass
- 8. Boiler isolation valves
- 9. Supplemental heat for Academic Center and Auditorium

Sequences

Hot Water

HRC runs to meet low temp reset schedule
Stage 1 heating, \$0.19/Therm.

BLR-4 runs if HRC cannot meet HW load
Stage 2 heating, \$1.25/Therm.

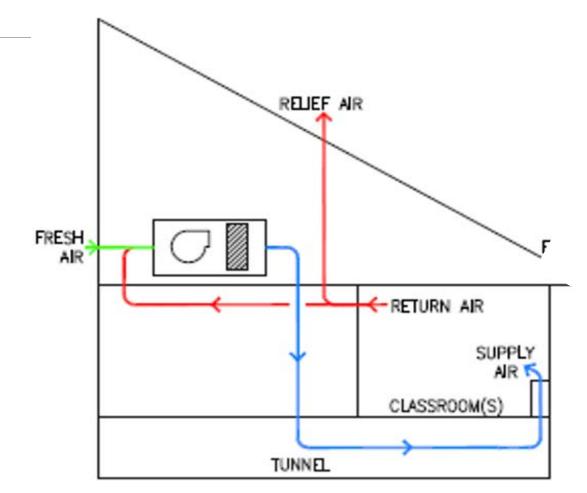

 Existing boilers run to meet Science HW load if HRC and BLR-4 cannot

Stage 3 heating, \$1.88/Therm.

Results

	Before Project 2011-2012	After Project 2012-2013	% Change
Gas Used at Science Center, Decatherms	2,803	2,182	Down 22%
Gas used at University, Decatherms	37,376	36,641	Down 2%
Steam Used at Cordier, Lbs./Yr	433,696	-0-	
Steam Used at H-K, Lbs./Yr	883,935	-0-	
Steam Main Line Loss, Lbs./Yr	474,100	-0-	
Area Heated from Science Center, Sq. Ft.	85,000	164,316	Up 93%
Heating Degree Days/Yr	4,546	4,689	Up 3%

Conclusions


Less gas to heat three buildings than to heat one

Including the steam no longer used, **41% decrease** in gas usage

Similar approaches will have tremendous energy efficiency potential!

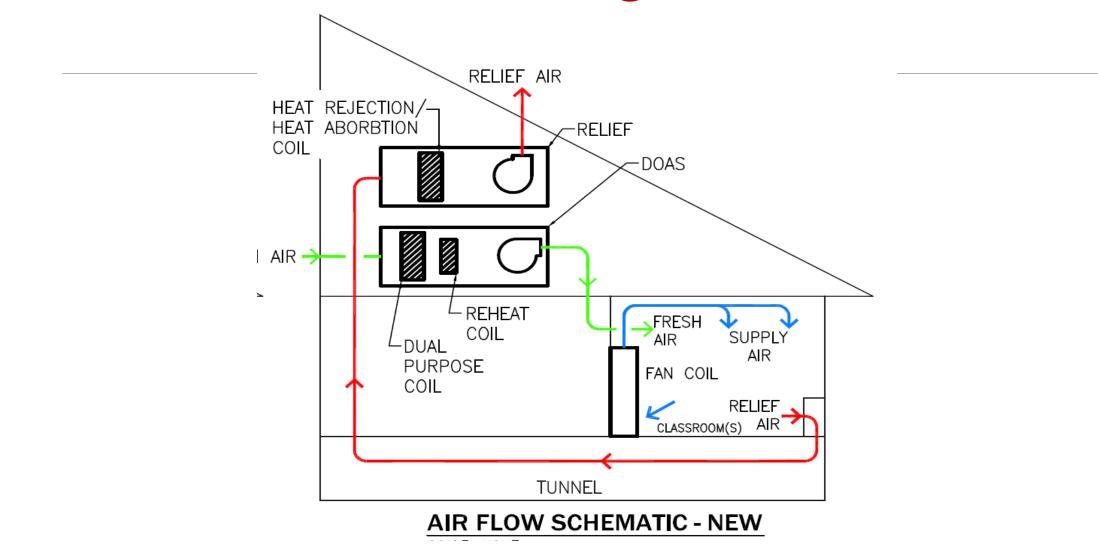
Update the HVAC

The issues...

- Old tunnel induction system
- DX cooling added to MUA
- Poor temp control
- Temp degradation of primary air
- IAQ concerns about using tunnels for fresh air
- Don't just abandon the tunnels
- Code requires energy recovery

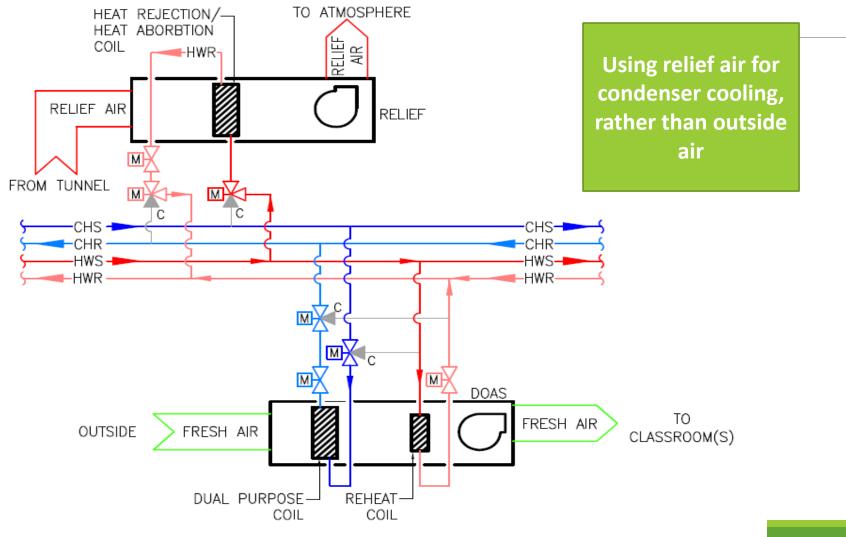
Design Concerns

What to do with the tunnels?

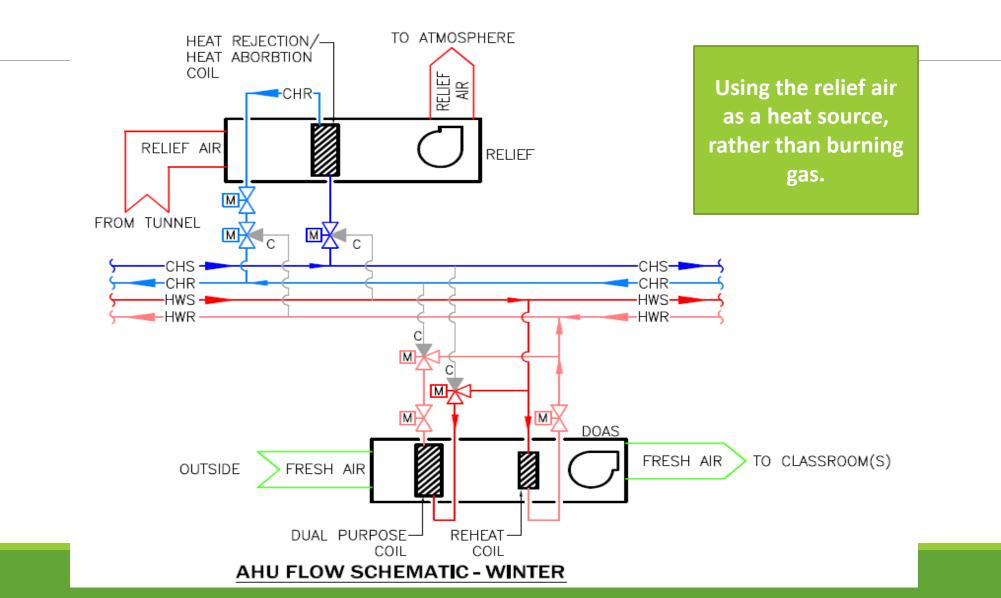

- High humidity from water below floor?
- Possible radon accumulation?

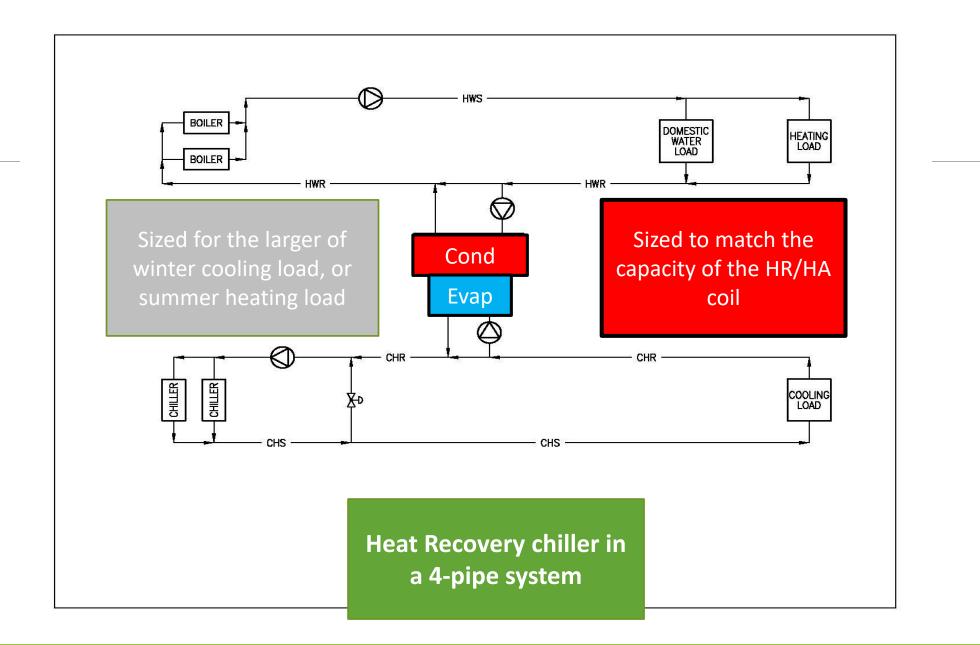
• Costly to fill?

How can we recovery energy?


Limited space for new equipmentExisting mezzanines

When Nothing Else Fits


DERAC


(DHRC Enhanced Runaround Coils)

AHU FLOW SCHEMATIC - SUMMER

Why do we do this?

A HR chiller operates to address con-current heating and cooling loads

Naturally occurring con-current loads

• Combined C.O.P. ~ 7.7

Artificially occurring con-current loads

• Heating C.O.P ~ 5.0

Cooling C.O.P. ~ 3.6, or +/- 0.88 kW/T

Potential savings at HHES ~ \$4.98/Hr in summer

Potential savings at HHES ~ \$0.53/Hr in winter

At Various O/A Conditions

Energy and Cost to Precondition 10,000 CFM to Room Neutral Conditions

	No Energy Recovery			Run-Around Coil (RAC)				DHRC Enhanced (DERAC)			
OAT, F	HTG₁	CLG1	\$/Hr	HTG₁	CLG1	kWh	\$/Hr	HTG₁	CLG1	kWh	\$/Hr
5	727	0	\$8.08	483	0	1.5	\$5.49	413	0з	22.8	\$6.53
20	564	0	\$6.27	329	0	1.5	\$3.79	251	0з	22.8	\$4.72
35	401	0	\$4.46	234	0	1.5	\$2.73	88	0з	22.8	\$2.91
50	239	0	\$2.65	139	0	1.5	\$1.68	0 2	0з	17.4	\$1.48
55	184	0	\$2.05	108	0	1.5	\$1.32	0 2	0з	13.4	\$1.14
65/57	71	0	\$0.79	71	0	0	\$0.79	0 2	0з	5.2	\$0.44
75/63	208	289	\$4.38	208	289	0	\$4.38	0 2	32	23.9	\$2.26
85/69	208	515	\$6.43	208	515	0	\$6.43	0 2	150	23.9	\$3.11
95/76	208	789	\$9.58	208	789	0	\$9.58	0 2	424	23.9	\$5.07

Highlights of The Chart

DERAC contributes at all OAT

Only energy recovery option that does

Free heating available at temps above 35F Free cooling available at temps below 75F

Capacity limited by size of HR/HA coil

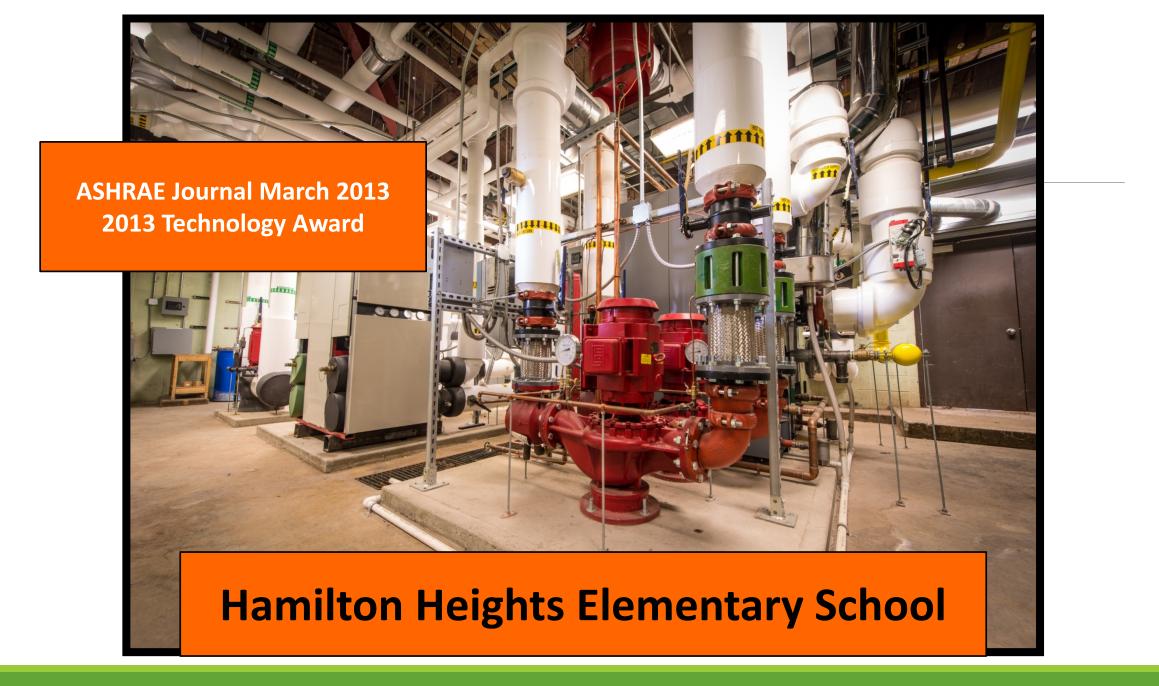
Can be connected to any exhaust/relief location Not as efficient at very cold temps as a RAC

Turbocharged Runaround Coils

DOAS Energy Requirement	DOAS Net Energy Intensity kBTU/SF/Yr (site)	DOAS \$/Yr Htg/Clg	DOAS and RAH \$/Yr Incl Fan Hp.
No Energy Recovery	16.545	\$18,018	\$22,601
Conventional Runaround coil (RAC)	12.653 24% Energy Saving	\$13,853	\$20,023
DHRC Enhanced Runaround Coil (DERAC)	6.109 63% Energy Saving	\$10,999	\$15,169

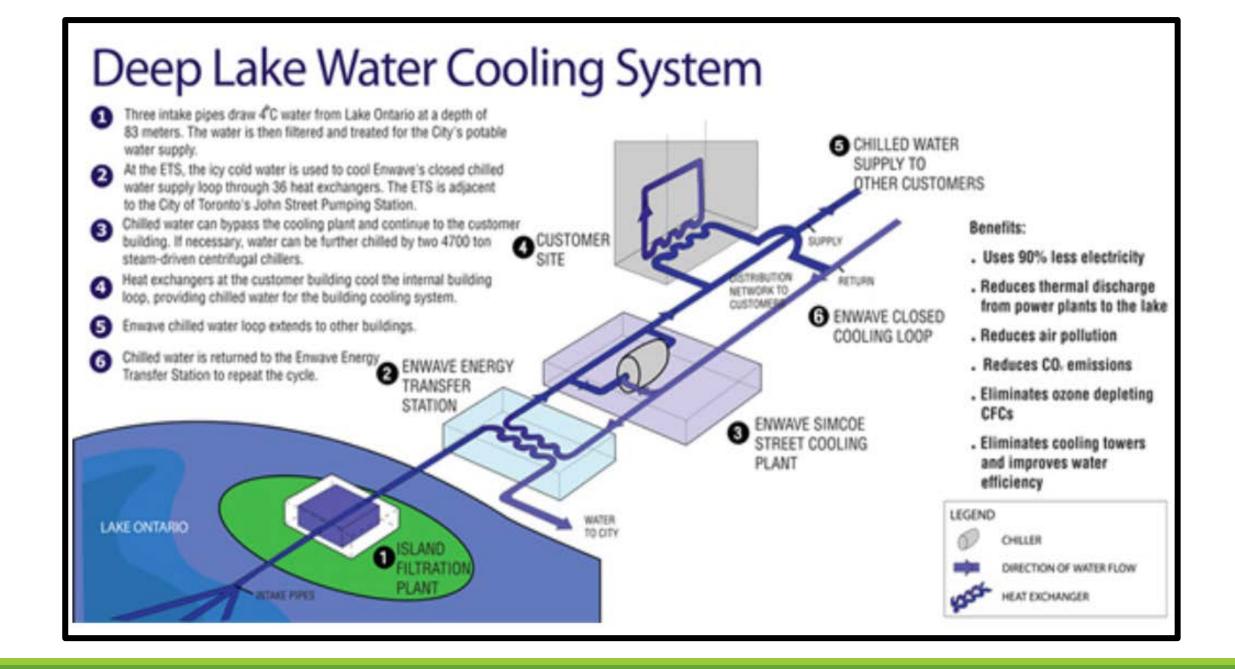
Results vs. Original

Hamilton Heights Elementary School	Energy Intensity (source) kBTU/SF/Yr	\$/SF/Yr	Energy Star® Rating
2008-09	175.2	\$0.99	40
2011-12	91.2	\$0.64	96


Saved \$37,450/Yr.

Less Expensive to Build?

Equipment	No Energy Recovery	Run-Around Coil	Enhanced Run-Around Coil
Main Chiller	235T	235T	200T
Heat Recovery Chiller	15T	15T	50T
Boilers	4.6 MMBH	4.2 MMBH	4.0 MMBH
DOAS	3 coils, 9.4 BHp	4 coils, 13.1 BHp	2 coils, 7.2 BHp
Relief Fan	No coil, 4.0 BHp	HR coil, 5.05 BHp	HR coil, 5.05 BHp
Run around loop	No	Yes	No
Pumps	6	8	6


Highlights of the Chart

- The most efficient solution (DERAC) was the least expensive, even less than the no energy recovery option
- The least expensive and most efficient solution (DERAC) took less mechanical room space
- Easy and cost-effective addition to existing runaround coils

Engineering outside the box

Introducing Burlington "Metro-Thermal" A Deep Energy Solution

Geothermal Source/Sink for downtown

NIMBY to OKIMBY?

Affordable Energy and Better Buildings

Run on the voltage of **new ideas**

and

questioning traditional solutions.

Mechanical System

Deep and Holistic Energy Applications

Energy Conservation **AND** Energy Efficiency

Thomas H. (Tom) Durkin, PE ASHRAE Fellow <u>thdurkin46@gmail.com</u> (317) 402-2292