

Putting People First! Managing IAQ for Health

Stephanie Taylor, M.D., M. Arch

Presentation Summary

We are *Homo-indooris*

New understanding

Please explain!

New directions

- Medicine is failing us
- Are buildings still shelters?
- New tools and new data
- Hospitals, offices, schools
- Microbes indoors
- Humans indoors
- What should we do?
- Conclusions

Presentation Summary

We are *Homo-indooris*

New understanding

Please explain!

New directions

- Medicine is failing us
 Are buildings still shalters
- Are buildings still shelters?
- New tools and new data
- Hospitals, offices, schools
- Microbes indoors
- Humans indoors
- What should we do?
- Conclusions

We are trying hard to decrease HAI rates, but these infections are still too common

Autoimmune, inflammatory and many infectious diseases are on the rise

Domesticated dogs are now carriers of the quickly evolving influenza virus

Homo Indooris - we are now inside 85% of our time

"We shape our buildings, then they kill us!" Dr. Dickerman

- Open dwellings
- Outdoor air exchange

- Tight building envelopes
- Mechanical air ventilation systems

Presentation Summary

New understanding

Please explain!

New directions

- Medicine is failing us
- Are buildings still shelters?
- New tools and new data
- Hospitals, offices, schools
- Microbes indoors
- Humans indoors
- What should we do?
- Conclusions

Thankfully, we can now see if this is true

Tissue culture

Metagenomics 2018

Genetic analysis has shown us that each of us is an entire ecosystem!

Buildings have their own microbiome

A closer look at our surroundings

The indoor environment now drives natural selection

Microbes in mechanically ventilated buildings are more closely related to pathogens

A study to examine the impact of a building on occupant health

One year-long study to evaluate the patient room environment and HAIs

Correlate indoor conditions in 10 patient rooms and 2 nurse stations

With new patient infections

One year-long study to evaluate the patient room environment and HAIs

8 million room data points ~ 300 patient outcomes

Room	Clinical symptoms	HAI Organisms (if indicated)
xx	pneumonia, viremia	Pseudomonas, Epstein-Barr virus
xx	pneumonia	Staphylococcus aureus
xx	open wound of head, neck, and trunk	
xx	bacteremia, organism unspecified	Citrobacter infection
xx	infection due to vascular device	
xx	cellulitis	Staphylococcus aureus
xx	sepsis, cellulitis, abscess	
xx	bacteremia, organism unspecified	
xx	pneumonia, organism unspecified	
xx	fever; bacteremia, organism unspecified	
xx	viremia	Cytomegalovirus (CMV)
xx	wound infection after surgery	
xx	urosepsis, organism unspecified	
xx	sepsis following cardiac surgery	
xx	pneumonia, organism unspecified	
xx	infection of skin and subcutaneous tissue	
xx	colitis and diarrhea	Clostridium difficile
xx	wound infection after surgery	
xx	urosepsis, organism unspecified	
хх	diarrhea	salmonella enteritis

As patient room RH went down, HAIs went up!

As patient room RH went up, HAIs went down!

2018 Study: Indoor-air RH and health outcomes in residents in a long-term care facility (over 4 yrs)

VS

Patient infections

Infections

- respiratory (viral & bacterial)
- GI (Noro. & Notovirus, C. diff)
- urinary tract
- conjunctivitis
- cellulitis

Environmental data

Indoor conditions

- temperature
- relative humidity
- visitors
- staff absenteeism

Outdoor climate

- temperature
- relative humidity
- flu outbreaks

Respiratory & GI infection rates were lowest when indoor RH = 40-60%

2018 study: Humidity decreased Influenza A illness in a pre-school

	Half of the	March 11 (32 days) classrooms were e other half were not	
RH of classrooms	% Airborne particles carrying virus (PCR)	Virulence of airborne virus (% cells infected)	# children absent due to influenza illness
20%	49%	75%	22
45%	19%	35%	9

Presentation Summary

New understanding

Please explain!

New directions

- Medicine is failing us
- Are buildings still shelters?
- New tools and new data
- Hospitals, offices, schools
- Microbes indoors
- Humans indoors
- What should we do?
- Conclusions

Why is dry air so powerful?

Dry, thirsty air steals moisture from wherever it can – a law of physics

What determines if this cough will infect others?

When RH < 40%, pathogen infectivity is high

Greater airborne transmission

Evasion from surface cleaning through resuspension

Increased survival and infectivity

Infectious droplets shrink, travel far and evade surface cleaning when the air is dry

Does recontamination from infectious droplet nuclei settling out of the air explain this?

Contact precautions have <u>**not**</u> been shown to effectively reduce transmission in most patients with MRSA and VRE

When full contact precautions were stopped:

- No significant increase in transmission rates
- The health system saved approx. \$643,776 and 45,277 hours per year in healthcare worker time previously spent on donning and doffing personal protective equipment

P duwlq/#11/#aqihfwlrq#Frqwurd# #Krvslwdd#Islghp lrorj |

C. diff can travel in infectious aerosols

December 2018 – American Journal of Infection Control.

- C-Diff seeded in a toilet
- Water samples, settle plates, and air samples
- Spores present after 24 flushes
- Droplet nuclei spore bioaerosol produced over at least 12 flushes

Transmission of bacteria in the OR is higher in low RH

Greeley, D Indiana Medical Center, 2018

The sterile field was less contaminated in OR with RH 35% vs 20%

Influenza A virus is more infectious when RH is below 40%

Did the very low RH in the airplane cabin contribute to this?

"Flight attendant in Hospital After Deadly Infection Spreads Onboard" April 7, 2019

✓Yes, she was vaccinated!

Pathogens Requiring Airborne Infection Isolation

- Anthrax
- Avian influenza
- Varicella disease (chickenpox, shingles
- Measles (rubeola)
- Severe acute respiratory syndrome (SARS)
- Smallpox (variola)/Varioloa virus
- Tuberculosis (TB)

Pathogens Requiring Airborne Infection Isolation

- Clostridium difficile
- Diphtheria
- Epiglottitis, due to Haemophilus influenzae type b
- Haemophilus influenzae Serotype b (Hib) disease
- Influenza, human (typical seasonal variations)
- Meningitis & Meningococcal disease sepsis, pneumonia
- Mumps (infectious parotitis)/Mumps virus
- Mycoplasmal pneumonia
- Parvovirus B19 infection (erythema infectiosum)
- Pertussis (whooping cough)
- Pharyngitis from Adenovirus, Orthomyxoviridae, Epstein-Barr virus, Herpes simplex virus

- Pneumonia (Adenovirus, Haemophilus influenzae Serotype b, Meningococca Mycoplasma)
- Streptococcus Group A
- Pneumonic plague/Yersinia pestis
- Rubella virus infection (German measles)/Rubella virus
- Severe acute respiratory syndrome (SARS)
- Streptococcal disease (group A streptococcus)
- Viral hemorrhagic fevers due to Lassa, Ebola, Marburg, Crimean-Congo fever viruses
 Stanford | Environmental Health & Safety

This is the most startling news of all...

"Antibiotic Resistance Can Spread Through The Air, Scientists Warn, And Yes - You Should Be Terrified" July 26, 2018

Dry conditions increase <u>horizontal</u> transfer of antibiotic resistance genes

Enough about microbes. How do humans do in dry air?

When RH<40%, humans suffer!

Sitting in room air with 20% RH, the average person becomes clinically dehydrated in 8 hours

more infections & asthma attacks

impaired brain function

skin cracking, decreased wound healing

dry eyes, excessive tearing

Dry air impairs our respiratory system defenses

A key study just published in PNAS

"Low ambient humidity impairs barrier function and

innate resistance against influenza infection"

Proceedings of the National Academy of Sciences, USA. May 19, 2019

Eriko Kudo, Eric Song, Laura Yockey, Tasfia Rakib, Patrick Wong, Robert Homer, Akiko Iwasaki

Question investigated: Why do these differences exist?

Study setup

Summary: Innate respiratory protective mechanisms are optimal at 50% RH, and impaired at RH 20%

Summary: Innate respiratory protective mechanisms are optimal at 50% RH

ASHRAE 1985:"Optimal RH Level For Health" = 40%–60%

35 years later..... Taylor Chart 2019

Presentation Summary

New understanding

Please explain!

New directions

- Medicine is failing us
- Are buildings still shelters?
- New tools and new data
- Hospitals, offices, schools
- Microbes indoors
- Humans indoors
- What should we do?
- Conclusions

Why do we still keep our indoor environment so dry?

The great indoor air RH debate!

What motivates people to listen?

Humidification is used when the financial impact is quantifiable

National Institute of Health animal facility

NASA spacecraft

Louvre

Replacement cost of a primate: \$22,000 RH 40%–60% Cost to train an astronaut: \$50 million (in 2006) RH 40%–60% Mona Lisa value: \$780 million **RH 40%–60%**

Do humans have a dollar value?

These humans are worthy of humidification

HAIs are costly for a 250 bed hospital

Summary of Total Excess Costs and Hospital Days Due to Hospital Acquired Infections

	Total Infections	Total Excess Costs	Total Excess Hospital Days
Urinary Tract Infections	1,296	\$1,435,968	2592.0
Surgical Wound Infections	365	\$7,042,464	4378.0
CRBSI	148	\$4,990,636	2509.0
VAP	15	\$401,369	170.0
MRSA	120	\$927,162	646.0
CDIFF	122	\$500,200	733.0
TOTAL	2,066	\$15,297,799	11,028.0

*2015 volume of a selected 250-bed hospital, APIC calculated costs

The majority of bacteria causing HAIs are resistant to dryness and survive in the air

Acinetobacter supp.	3 d up to	5 months	6 references
Clostridium difficile (spores)		5 months	3 references
Escherichia coli	1.5 h up to	16 months	10 references
Enterokokkus supp. inkl. VRE und VSE	5 d up to	4 months	4 references
Klebsiella supp.	2 h up to	>30 months	5 references
Pseudomonas aeruginosa	6 h up to	16 months	7 references
Staphylococcus aureus, inkl. MRSA	7 d up to	7 month	6 references

reaction to hospital's dry environment \rightarrow increased infectivity

Value analysis of humidification in 250-bed hospital

BENEFI ⁻ B	BENEFITS - Year One		Dollars	Q4
Increase Cost Avc	ncreased Revenue	Maximize per day bed value by decreasing LOS Decrease non-reimbursable HAI costs	\$ 1,310,126 \$ 764,890	,126.00 ,890.00 ,787.00
INVESTM	Cost Avoidance	3% CMS penalty for read CMS Quality Index penal Joint Commission of ation Employee absenterism HAI litigation by patients	TBD	TBD TBD TBD TBD 166,803 367,212
	NVESTMENTS	Quarterly total Cumulative value Gas	18 2,166,803 52,166,803	(23,850) (34,573) - ;58,423) i42,194)
NET VAL		Installation & Integration of New System Maintenance Operating Cost OR & PT Room Down Time	\$ (1,198,500) \$ (23,850) \$ (34,573) \$ (10,000)	L08,380 225,018
	IET VALUE	Quarterly total Cumulative investment	(\$1,266,923) (\$1,266,923)	

Change is hard! We resist and often do not even listen

Do we really want to keep doing the same old thing?

Collaboration is essential

Working alone

Clinicians working alone in their silo of delivering medical and surgical treatments cannot solve problems caused by the indoor environment.

Working together

If clinicians, facility managers and regulators work together, we can soar!

Uniting our goals would benefit everyone

Medical professionals

Heal patientsFollow clinical protocolsAvoid lawsuits

Building professionals

Reduce energy useStay within budgetFollow building codes

IMPROVE OCCUPANT HEALTH

Better health

- Decrease acute and chronic diseases
- •Decrease financial losses from illness

Evolution and RH

skull of the grassland Saiga antelope

Evolution and RH

the African desert first cousin

Conclusions

The indoor environment is critical for our health

Humans need water vapor

Humidification can present significant challenges

We cannot ignore this!

Thank you!

Stephanie Taylor, MD, M Arch, FRSPH(UK), M CABE MD@taylorcx.com (860) 501-8950

Bibliography

- Noti JD et al. 2013. Higher Humidity Leads to Loss of Infectious Virus from Simulated Coughs. University of Illinois.
- Kembel SW et al. 2012. Architectural design influences the diversity and structure of the built environment microbiome, The International Society for Microbial Ecology (6) 1469–1479.
- Tropical Medicine & International Health. 2008., Volume 13, Issue 12, pages 1543-1552, 6 Oct.
- Sterling EM et al. 1985. Criteria for Human Exposure to Humidity in Occupied Buildings. ASHRAE Transactions. Vol. 91. Part 1.
- Fuchsman et al. 2017. Effect of the environment on horizontal gene transfer between bacteria and archaea . PeerJ 5:e3865; DOI 10.7717/peerj.3865.
- Donovan TL et al. 2008. Employee absenteeism based on occupational health visits in an urban tertiary care Canadian hospital. Public Health Nursing 25(6), 565-575.

Additional slides on Yale research

"Low ambient humidity impairs barrier function and innate resistance against influenza infection"

Eriko Kudo, Eric Song, Laura Yockey, Tasfia Rakib, Patrick Wong, Robert Homer, Akiko Iwasaki Proceedings of the National Academy of Sciences, USA. May 19, 2019

Findings: 1

Low humidity of RH = 10% decreased muco-ciliary clearance of influenza virus

Findings:

Findings:

Low humidity of RH = 10% diminished repair of airways damaged by infection